

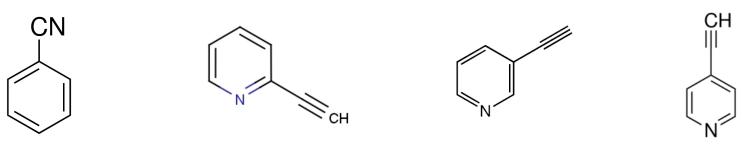
Millimeter-wave Chirality Spectrometer (ChiralSpec)

Shanshan Yu, Theodore Reck, John Pearson, Michael Malaska and Robert Hodyss

Jet Propulsion Laboratory, California Institute of Technology, USA

Brooks Pate

University of Virginia, Charlottesville, VA 22903, USA



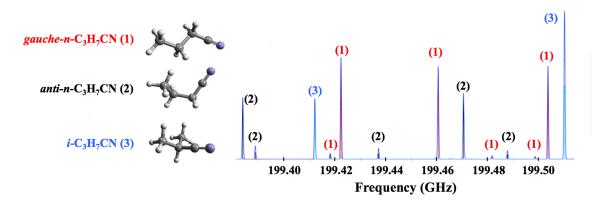
Copyright 2018. All rights reserved.

Overview of ChiralSpec

- **Instrument description**: a simple mm-wave spectrometer operated in two modes:
 - Chirality detection mode to determine which enantiomer is in excess
 - Survey mode as a traditional mm-wave spectrometer to characterize chemical composition
- Chirality detection theory formulated in 2012 by Hirota and experimentally demonstrated by groups in Harvard and Virginia at 2-18 GHz with large instruments
- **Goal of this effort**: experimental demonstration of chirality detection at 75-205 GHz where there is a path for instrument miniaturization.
- Addresses planetary science objectives by looking for biosignature patterns: chirality of amino acids; double-bond position in fatty acids; amino acids distribution, etc.
- Complimentary to mass spectrometer for distinguishing isomers of the same molecular weight, e.g., C₇H₅N, 103 Da, interesting to Titan, where is N inserted to? What is arrangement of atoms?

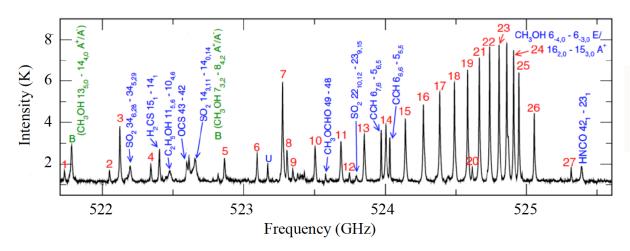
Benzonitrile

2-Ethynylpyridine


3-Ethynylpyridine

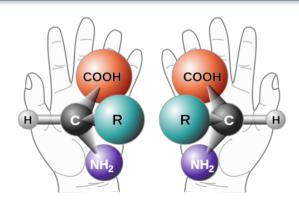
4-Ethynylpyridine

ChiralSpec's core: rotational spectroscopy



- Non-invasive approach
- Extraordinary capability of distinguishing isomers via high resolving power

Multiple separate lines from each isomer ensure secured identification

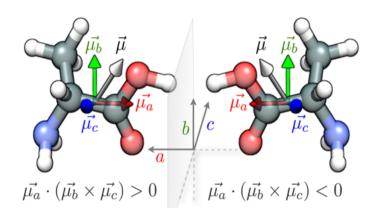

Capable of analyzing mixture of gases without separating them first

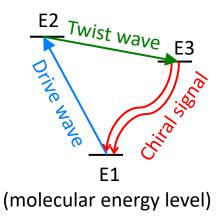
Survey spectrum of Orion KL from Herschel/HIFI (red numbers label CH3OH)

What is Chirality?

- Enantiomers of a chiral molecule: non-superimposable mirror images
 - Referred in terms of right- and left-handedness
 - Identical in many properties making them challenging to distinguish
 - Indistinguishable by mass spectroscopy
- Can be used as a chemical 'biomarker' for search for life
 - Organisms on Earth use predominately homochiral molecules
 - Life uses only left-handed amino acids
 - Life used only right-handed sugars

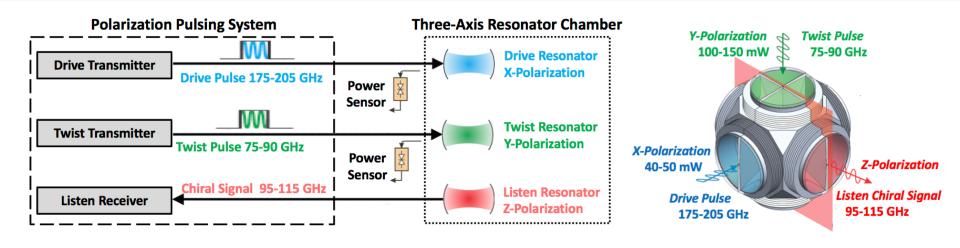
Comparative Technologies




Technology	Methodology	Sensitivity	Comments
ChiralSpec	Rotational spectroscopy Targets in gas phase	Gas: 10 ⁹ molecules/cm ³ with 1L volume Solid: ppm level with 0.2mg sample	Not require derivatization Insensitive to non-polar molecules
GC-MS	Gas chromatography Targets in gas phase	ppm	Require derivatization
MILA	Laser induced fluorescence Targets in aqueous phase	Liquid: 100 pM (10 ⁻¹⁰ mol/L)	

- Gas chromatography (GC), implemented in Rosetta/COSAC and Curiosity/SAM
- Microfluidic Life Analyzer (MILA)
 - Capillary electrophoresis-based laser induced fluorescence (CE-LIF)
 - Developed with PICASSO-13 (PI Peter Willis of JPL)
 - With focus on amino and carboxylic acids
 - Measurements involve liquid extraction of samples, fluorescent tagging, introduction of two chiral recognition agents

Principle of chirality detection by ChiralSpec



- ✓ Exploiting opposite signs of dipole moment products (Image : Shubert et al 2016)
- \checkmark Simultaneously using a cycle of three transitions involving the a, b and c dipoles
- ✓ Generating a time-domain chiral emission signal via exciting species with two pulses.
- ✓ Enantiomeric pair's chiral signals: same frequency but 180° phase difference

Schematic of ChiralSpec instrument

- All three waves capable of tuning frequencies in wide ranges
 - Capable of tuning to molecular fingerprint frequencies
 - Capable of analyzing mixture of gases without separating them first
- Chirality detection mode with all three waves on
 - Enantiomeric pair's chiral signals: same frequency but 180° phase difference
 - Giving difference abundance of enantiomeric pair
- Survey mode with one wave on
 - Giving sum abundance of enantiomeric pair
 - Giving abundance for each of nonchiral molecules

Benchmark Molecules

Molecule	Cycle	Pulse	Transition	Freq. (GHz)	
Propylene Oxide		Drive	$8_{4,4} \leftarrow 7_{3,4}$	182.856	
(CH₃CHCH₂O) MW=58 g/mol	1	Twist	$8_{3,5} \leftarrow 8_{4,4}$	81.256	
μ_a , μ_B , μ_c =0.95,1.67, 0.56 Debye		Listen	$7_{3,4} \leftarrow 8_{3,5}$	101.599	
		Drive	$15_{4,11} \leftarrow 14_{4,10}$	191.226	
$H_3C_{\prime,}$	2	Twist	$14_{5,10} \leftarrow 15_{4,11}$	88.069	
O			Listen	$14_{4,10} \leftarrow 14_{5,10}$	103.157
Alanine		Drive	$21_{17,4} \leftarrow 20_{16,4}$	191.590	
(CH₃CHNH₂COOH) MW=89 g/mol	1	Twist	$21_{16,5} \leftarrow 21_{17,4}$	76.855	
μ_a , μ_b , μ_c =0.62, 1.33, 0.34 Debye		Listen	$20_{16,4} \leftarrow 21_{16,5}$	114.735	
0		Drive	$20_{19,1} \leftarrow 19_{18,1}$	195.558	
H ₃ C OH	2	Twist	$20_{18,2} \leftarrow 20_{19,1}$	86.643	
$^{ m N}$ H $_{ m 2}$		Listen	$19_{18,1} \leftarrow 20_{18,2}$	108.915	

- Propylene oxide is the first chiral molecule observed in ISM (McGuire et al 2016), is volatile and easier for sampling handling (vapor pressure of 450 Torr at 300K).
- We will use laser ablation to bring alanine into gas phase.

Schedule and Milestones

Tasks		2017				2018						201					19	9					2020					
		23	() 4		Q1		Q2		Q3	I	Q4		Q1		Q2		Q	3	Q	4	(Q1		Q2		Q3	Q4
T1 Design, fabricate, integrate & test pulsing system																												
1.1 Drive pulse amplifier design,fabrication and test	~50mW achieved or th					or the drive pulse power																						
1.2 Phase-trigger circuit design, fabrication and test																												
1.3 procurement																												
1.4 Pulsing system integration and test											I	•	1	rad	ian	pre	cis	ion	acł	niev	ed	for	pha	se	mea	asur	eme	nts
T2 Design, fabricate, integrate & test resonator/coupler											Τ								•	Q ≥	≥10	00	ach	eve	ed f	or re	son	ators
T3 Advance mm-wave three-wave mixing technology											Τ																	
3.1 Measure chirality of propylene oxide without resonators											Т								•	Chi	rali	ty r	nea	sur	ed f	or R	&S	samp
T4 Advance mm-wave cavity resonance technology																												
4.1 Measure chirality of propylene oxide with resonators						100	00x	chir	al :	sens	i ⁄it	y in	cre	aser	me	nt a	che	eive	d				•					
T5 Demonstrate ChiralSpec applicability to missions											Τ																	
5.1 Measure chirality of R-propylene oxide									С	hira	l si	gnal	ob	ser	/ec	for	10	⁻⁵ m	ιΤοι	rr R	-sar	mpl	е					
5.2 Measure chirality of mixture of R- and S-propylene oxide						Chi	ral	sigr	nal	obse	e ve	ed fo	or 1	0-4	mΤ	orr s	san	nple	wit	h di	ffere	ent	R:S	rati	ios	•		
5.3 Set up laser ablation sample handling system											I																	
5.4 Measure chirality of pure alanine ice																												
5.5 Measure chirality of alanine-impregnated water ice							С	hira	l si	gnal	of	alar	nine	e ob	sei	ved	at	771	√ in	ala	nin	ie-i	mpr	egn	ate	d wa	iter	ice

Acknowledgements

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Prime Contract NNN12AA01C issued through the PICASSO Program by the National Aeronautics and Space Administration.